83 research outputs found

    Stripe formation in high-Tc superconductors

    Full text link
    The non-uniform ground state of the two-dimensional three-band Hubbard model for the oxide high-Tc superconductors is investigated using a variational Monte Carlo method. We examine the effect produced by holes doped into the antiferromagnetic (AF) background in the underdoped region. It is shown that the AF state with spin modulations and stripes is stabilized du to holes travelling in the CuO plane. The structures of the modulated AF spins are dependent upon the parameters used in the model. The effect of the boundary conditions is reduced for larger systems. We show that there is a region where incommensurability is proportional to the hole density. Our results give a consistent description of stripes observed by the neutron- scattering experiments based on the three-band model for CuO plane.Comment: 8 pages, 9 figure

    A crib-shaped triplet pairing gap function for an orthogonal pair of quasi-one dimensional Fermi surfaces in Sr2_2RuO4_4

    Full text link
    The competition between spin-triplet and singlet pairings is studied theoretically for the tight-binding α\alpha-β\beta bands in Sr2_2RuO4_4, which arise from two sets of quasi-one dimensional Fermi surfaces. Using multiband FLEX approximation, where we incorporate an anisotropy in the spin fluctuations as suggested from experiments, we show that (i) the triplet can dominate over the singlet (which turns out to be extended s), and (ii) the triplet gap function optimized in the Eliashberg equation has an unusual, very non-sinusoidal form, whose time-reversal-broken combination exhibits a crib-shaped amplitude with dips.Comment: 5 pages, RevTeX, to appear in Phys.Rev.B (Rapid Communications

    Spin Fluctuation-Induced Superconductivity in Organic Compounds

    Full text link
    Spin fluctuation-induced superconductivity in two-dimensional organic compounds such as \kappa-(ET)_2-X is investigated by using a simplified dimer Hubbard model with right-angled isosceles triangular lattice (transfer matrices -\tau, -\tau^\prime). The dynamical susceptiblity and the self-energy are calculated self-consistently within the fluctuation exchange approximation and the value for T_c as obtained by solving the linearized Eliashberg-type equations is in good agreement with experiment. The pairing symmetry is of d_{x^2-y^2} type. The calculated (U/\tau)-dependence of T_c compares qualitatively well with the observed pressure dependence of T_c. Varying the value for \tau^\prime/\tau from 0 to 1 we interpolate between the square lattice and the regular triangular lattice and find firstly that values of T_c for \kappa-(ET)_2-X and cuprates scale well and secondly that T_c tends to decrease with increasing \tau^\prime/\tau and no superconductivity is found for \tau^\prime/\tau=1, the regular triangular lattice.Comment: 4 pages, 6 eps figures, uses jpsj.st

    Two-band Fluctuation Exchange Study on the Superconductivity of β′\beta'-(BEDT-TTF)2_2ICl2_2 under High Pressure

    Full text link
    We study the pressure dependence of the superconducting transition temperature of an organic superconductor β′\beta'-(BEDT-TTF)2_2ICl2_2 by applying the fluctuation exchange method to the Hubbard model on the original two-band lattice at 3/4-filling rather than the single band model in the strong dimerization limit. Our study is motivated by the fact that hopping parameters evaluated from a first-principles study suggest that the dimerization of the BEDT-TTF molecules is not so strong especially at high pressure. Solving the linearized Eliashberg's equation, a dxy_{xy}-wave-like superconducting state with realistic values of TcT_c is obtained in a pressure regime somewhat higher than the actual experimental result. These results are similar to those obtained within the single band model in the previous study by Kino {\it et al}. We conclude that the resemblance to the dimer limit is due to a combination of a good Fermi surface nesting, a large density of states near the Fermi level, and a moderate dimerization, which cooperatively enhance electron correlation effects and also the superconducting TcT_c.Comment: 6 pages, 8 figure

    Effect of Umklapp Scattering on Magnetic Field Penetration Depth in High-Tc Cuprates

    Full text link
    The renormalization of the magnetic field penetration depth λ\lambda owing to the electron-electron correlation is discussed with its application to high-TcT_{\rm c} cuprates. The formula for the current carried by quasiparticle with the Umklapp scattering is derived, on the basis of which we investigate how the value of λ−2\lambda^{-2} deviates from that of n/m∗n/m^* where nn and m∗m^* are the carrier density and the effective mass respectively. Although this deviation is small in the case of weak momentum dependence of the vertex, this is large and negative owing to the non-negligible value of the backflow in the case of the strong antiferromagnetic spin fluctuation. The observed doping dependence of λ−2\lambda^{-2} in high-TcT_{\rm c} cuprates, specifically a peak structure at the slightly overdoped region, is explained by the analytical consideration and the numerical calculation based on the perturbation theory and the spin fluctuation theory. The consistency between λ−2\lambda^{-2} and dλ−2/dT{\rm d}\lambda^{-2}/{\rm d}T at absolute zero, which is the problem the isotropic model fails to explain, is also obtained by our theory.Comment: 25 pages, 9 figures. Another version(11 pages longer) will appear in J. Phys. Soc. Jpn (2002) No.

    Spin-triplet superconductivity in repulsive Hubbard models with disconnected Fermi surfaces: a case study on triangular and honeycomb lattices

    Full text link
    We propose that spin-fluctuation-mediated spin-triplet superconductivity may be realized in repulsive Hubbard models with disconnected Fermi surfaces. The idea is confirmed for Hubbard models on triangular (dilute band filling) and honeycomb (near half-filling) lattices using fluctuation exchange approximation, where triplet pairing order parameter with f-wave symmetry is obtained. Possible relevance to real superconductors is suggested.Comment: 5 pages, 6 figures, RevTeX, uses epsf.sty and multicol.st

    Spin-Dependent Mass Enhancement under Magnetic Field in the Periodic Anderson Model

    Full text link
    In order to study the mechanism of the mass enhancement in heavy fermion compounds in the presence of magnetic field, we study the periodic Anderson model using the fluctuation exchange approximation. The resulting value of the mass enhancement factor z^{-1} can become up to 10, which is significantly larger than that in the single-band Hubbard model. We show that the difference between the magnitude of the mass enhancement factor of up spin (minority spin) electrons z^{-1}_up and that of down spin (majority spin) electrons z^{-1}_down increases by the applied magnetic field B//z, which is consistent with de Haas-van Alphen measurements for CeCoIn_5, CeRu_2Si_2 and CePd_2Si_2. We predict that z^{-1}_up >z^{-1}_down in many Ce compounds, whereas z^{-1}_up < z^{-1}_down in Yb compounds.Comment: 5 pages, 4 figure

    Pseudogap Induced Antiferromagnetic Spin Correlation in High-Temperature Superconductors

    Full text link
    The pseudogap phenomena observed on cuprate high temperature superconductors are investigated based on the exact diagonalization method on the finite cluster t-J model. The results show the presence of the gap-like behavior in the temperature dependence of various magnetic properties; the NMR relaxation rate, the neutron scattering intensity and the static susceptibility. The calculated spin correlation function indicates that the pseudogap behavior arises associated with the development of the antiferromagnetic spin correlation with decreasing the temperature. The numerical results are presented to clarify the model parameter dependence, that covers the realistic experimental situation. The effect of the next-nearest neighbor hopping t′t' is also studied.Comment: 7 pages, Revtex, with 10 eps figures, to appear in J. Phys. Soc. Jpn. (Vol. 70, No. 1

    Phase Diagram of Superconductivity on the Anisotropic Triangular Lattice Hubbard Model

    Full text link
    We study the electronic states of the anisotropic triangular lattice Hubbard model at half filling, which is a simple effective model for the organic superconducting κ\kappa-BEDT-TTF compounds. We treat the effect of the Coulomb interaction by the fluctuation exchange (FLEX) method, and obtain the phase diagram of this model for various sets of parameters. It is shown that the d-wave superconductivity is realized in the wide region of the phase diagram, next to the antiferromagnetic states. The obtained phase diagram explains the characters of the experimental results very well.Comment: 4 pages, 6 figs, submitted for publicatio

    Theory of the beta-type Organic Superconductivity under Uniaxial Compression

    Full text link
    We study theoretically the shift of the superconducting transition temperature (Tc) under uniaxial compression in beta-type organic superconductors, beta-(BEDT-TTF)2I3 and beta-(BDA-TTP)2X[X=SbF6,AsF6], in order to clarify the electron correlation, the spin frustration and the effect of dimerization. The transfer integrals are calculated by the extended Huckel method assuming the uniaxial strain and the superconducting state mediated by the spin fluctuation is solved using Eliashberg's equation with the fluctuation-exchange approximation. The calculation is carried out on both the dimerized (one-band) and nondimerized (two-band) Hubbard models. We have found that (i) the behavior of Tc in beta-(BEDT-TTF)2I3 with a stronger dimerization is well reproduced by the dimer model, while that in weakly dimerized beta-BDA-TTP salts is rather well reproduced by the two-band model, and (ii) the competition between the spin frustration and the effect induced by the fluctuation is important in these materials, which causes nonmonotonic shift of Tc against uniaxial compression.Comment: 18 pages, 16 figures, 2 tabl
    • …
    corecore